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Abstract The quarks and particles’ mass and mass/spin relations are provided with coordi-
nates in configuration space and/or momentum space by means of the marriage of ordinary
Poincaré group representations with a non-associative algebra made through a demisemidi-
rect product, in the notation of Leibniz algebras. Thus, we circumvent the restriction that
the Poincaré group cannot be extended to a larger group by any means (including the
(semi)direct product) to get even the mass relations. Finally, we will discuss a connection
between the phase space representations of the Poincaré group and the phase space repre-
sentations of the associated Leibniz algebra.
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1 Introduction

Irreducible representations of the Poincaré group in any Hilbert space have relative position,
momentum, and spin as coordinates for the various particles individually. See Sect. 4 for
details. Is there any way to relate the different particles (different irreducible representations)
in terms of their masses, spins, charges, etc.?

In 1965, L. O’Raifeartaigh1 proved that the Poincaré group could not be extended to a
larger group which would have particles as well as any relation between the various parti-
cles’ masses, in spite of Okubo theory [6, 9, 10]. Moreover, a relation between the masses
and spins of the particles (Regge theory) [14, 15], was similarly prohibited when you have a
theory that starts with the Poincaré group. On the other hand, the quarks seemed to have nei-

1O’Raifeartaigh produced a paper in 1965 [11] that claimed the result. The proof was erroneous and Jost [4]
and Segal [18] provided mathematical proofs. Then O’Raifeartaigh [12, 13] and with Bohm [1] extended the
theorem.
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ther positions nor momenta in their theory; they do have operators for the third component
of the isospin, I3, and the hypercharges, Y2 and Y3, which as we shall see are eigenvalues of
one component, e7, of the set of octonions. As operators on the particles and quarks, these
internal coordinates of collective masses, isospins, and hypercharges must be invariant un-
der the action of the Poincaré group in its action on representations for massive, spinning
particles. In Okubo’s theory, the masses (or masses squared) of the particles are in linear re-
lations. For Regge theory, the masses (squared) and the spin are in an affine relationship. In
the case of the quarks, we have the charge Q = I3 + Y2 + Y3, a linear relation. These are all
properties of a vector space; so, why should we impose on these operators for these “internal
coordinates” that they have any particular properties having to do with the products of these
operators? In particular, why should we endow them with the property that their product is
associative? By dropping the axiom of product associativity on the internal coordinates, we
would have an extension of the idea of a representation of the Poincaré group to one which
is no longer associative, an absolute requirement otherwise for a group. The recent work
on Leibniz algebras by M.K. Kinyon [5], the book by G.M. Dixon [2], and the work by
J-L. Loday and T. Pirashvili [7] and J.M. Lodder [8] on Leibniz algebras and cohomology
has provided the input for a resolution of this interplay between what is a (not necessarily
product associative) linear vector space property and the properties of the Poincaré group.

As we shall see, the Lie algebra of the Poincaré group may be enlarged to a non-
associative algebra. A “Leibniz algebra”, a “Lie rack”, and a “Lie digroup”, and the relation
between the last two (Kinyon) are seen to be relevant. The appropriate non-associative al-
gebras with which to extend the Lie algebra of the Poincaré group will be shown to be the
(non-associative) octonions and algebras we can make from them (Dixon). We will provide
a representation of the resulting Leibniz algebra(s). We stress the property that only when
this Leibniz algebra reduces to an associative algebra is it possible to regain the properties
of a particle as an irreducible representation of the Poincaré group in a Hilbert space.

The phase spaces (symplectic spaces) on which the Poincaré algebra operates may be
algebraically characterized by doing a bit of cohomology; in the Lie algebra setting, the
“kernel of the coboundary operator on the set of two-forms” provides the solution according
to Guillemin and Sternberg [3]. The generalization of this to the Leibniz algebra case (a non-
associative case) is given by Loday and Pirashvili and extended by Lodder. In this way, we
will attribute the coordinates of position, momentum (and perhaps spin) to the quarks, and
not just to the particles. Also, we will give (briefly) a formalism in which we have the masses
and spins of particles in a family of particles so that the formulas of Okubo and Reggé hold.

In Sect. 2, we will give, in outline form, what a Leibniz algebra, a Lie rack, and a Lie
digroup are, as well as defining the demisemidirect product. In Sect. 3 we will look at vector
spaces that are made from certain non-associative algebras that include the octonions and
indicate how we should introduce the Poincaré Lie algebra into them. These two sections
are taken almost verbatim from [17]. In Sect. 4, we will discuss the representations and in
Sect. 5, the cohomology of this Leibniz algebra.

2 Leibniz Algebras, Lie Racks, and Lie Digroups

In this section, we will take M. Kinyon’s definition of a Leibniz algebra:

Definition 1 [5] A Leibniz algebra (l, [·, ·]) is a vector space l together with a bilinear
mapping [·, ·] : l × l → l satisfying the Leibniz identity

[X, [Y,Z]] = [[X,Y ],Z] + [Y, [X,Z]] (2.1)

for all X,Y,Z ∈ l.
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Loday, Lodder, and Pirashvili take [Y, [X,Z]] replaced by −[[X,Z], Y ].
If, in addition to (1), we have [X,Y ] = −[Y,X], then the Leibniz algebra, l, becomes a

Lie algebra, denoted g, and the Leibniz identity becomes the Jacobi identity. In this case we
denote [·, ·] by [·, ·]g.

Take [5]

S ≡ {[X,X];X ∈ l}. (2.2)

Then S is an ideal in l and g ≡ l/S is a Lie algebra.

Definition 2 [5] We define

adX(Y ) ≡ [X,Y ] ∀X,Y ∈ l; (2.3)

so,

ker(ad) = {X ∈ l : [X, ·] = 0}. (2.4)

Definition 3 [5] A Leibniz algebra l is said to split over E ⊂ l if E is an ideal in l such that
S ⊂ E ⊂ ker(ad) and there is a Lie subalgebra g ⊂ l such that l = E ⊕ g, the direct sum of
vector spaces. Then ∀u,v ∈ E , and X,Y ∈ g, it follows that

[u + X,v + Y ] = Xv + [X,Y ]g. (2.5)

Conversely, given a Lie algebra g and a g-module V , form l ≡ V ⊕g and define a bracket on
l by (2.5). Then (l, [·, ·]) is a Leibniz algebra called the demisemidirect product of V and g.
Then S � gV and ker(ad) = V ⊕{X ∈ g : Xv = 0 ∀v ∈ V }∩Z(g), where Z(g) is the center
of g. Furthermore, V � V ⊕ {0} is an ideal such that S ⊂ V ⊂ ker(ad) and l/V � g; so,
l splits over V .

We will use this definition where we take g equal to the Poincaré Lie algebra p, and V to
be an appropriate p-module.

Having now extended the concept of a Lie algebra, we next extend the concept of a Lie
group.

Definition 4 [5] A Lie rack (Q,◦,1) is a smooth manifold Q with bilinear operation ◦ and
a distinguished element 1 ∈ Q such that (1) for all x, y, z ∈ Q, x ◦ (y ◦ z) = (x ◦ y) ◦ (x ◦ z),
(2) ∀a, b ∈ Q, there exists a unique x ∈ Q such that a ◦ x = b, (3) 1 ◦ x = x, x ◦ 1 = 1 for
all x ∈ Q, and such that (4) ◦ : Q × Q → Q is a smooth mapping.

Example 1 [5] Let G be a Lie group with e = identity and V a G-module. On Q = V × G,
define binary operation ◦ by

(u,A) ◦ (v,B) ≡ (Av,ABA−1) (2.6)

for all u,v ∈ V and A,B ∈ G. Setting 1 = (0, e), then (Q,◦,1) is a (linear) Lie rack.

We have in mind G equal to the Lie group P (the Poincaré group) and V an appropriate
P -module.

It is convenient to have separate notations for operation from the left and right:
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Definition 5 [5] A dialgebra (A,�,�) is a vector space A together with bilinear mappings
�,�: A × A → A such that ∀x, y, z ∈ A,

x � (y � z) = (x � y) � z, (2.7)

x � (y � z) = x � (y � z), (2.8)

(x � y) � z = (x � y) � z. (2.9)

Lemma 1 [5] Given a dialgebra (A,�,�) and defining a bracket by

[x, y] ≡ x � y − y � x, (2.10)

then (A, [·, ·]) is a Leibniz algebra.

Example 2 If A ≡ V ⊕ G, G ⊆ End(V ), G a group, then define

(u,X) � (v,Y ) ≡ (Xv,XY), (2.11)

(u,X) � (v,Y ) ≡ (0,XY ). (2.12)

One may verify that (A,�,�) satisfies (2.7), (2.8), and (2.9). Hence by Lemma 1, (A, [·, ·])
is the demisemidirect product of V with the group G. Again, take G to be P , the Poincaré
Lie group.

Definition 6 [5] A disemigroup (H,�,�) is a set H with two binary operations � and �
satisfying (1) (H,�) and (H,�) are semigroups and (2) (H,�,�) is a dialgebra. A dis-
emigroup (H,�,�) satisfying (1) there exists 1 ∈ H such that 1 � x = x � 1 = x for all
x ∈ H and (2) ∀x ∈ H , there exists x−1 ∈ H such that x � x−1 = x−1 � x = 1 is called a
digroup. A Lie digroup (G,�,�) is a smooth manifold G with (G,�,�) a digroup such
that the digroup operations �,�: G × G → G and the inversion (·)−1 : G → G are smooth
mappings.

Example 3 [5] Let G be a group, and M a set on which G acts on the left. Suppose there
exists a point a ∈ M such that ga = a for all g ∈ G and suppose G acts transitively on
M\{a}. Then on H ≡ M × G, define

(u,h) � (v, k) = (hv,hk), (2.13)

(u,h) � (v, k) = (u,hk) (2.14)

for all u,v ∈ M , g, k ∈ G. Then (H,�,�) is a digroup and (u, g)−1 = (a, g−1).

Now we make a definition that will get us the connection between Lie digroups and Lie
racks:

Definition 7 [5] For x in digroup H , define ◦ on H by

x ◦ y ≡ x � y � x−1. (2.15)

Then we have the
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Lemma 2 [5] Let (G,�,�) be a Lie digroup. Consequently, (G,◦,1) is a Lie rack and thus
the tangent space T1G has the structure of a Leibniz algebra.

Example 4 [5] Let G be a Lie group with identity e, V a G-module, and set H = V × G.
As in the previous example, define �,� by (2.13), (2.14). Then (H,�,�) is a (linear) Lie
digroup. The distinguished unit is (0, e) and the inverse of (u,A) is (0,A−1).

We summarize with the theorem:

Theorem 1 [5] Let H = V × G with G a Lie group and V a G-module. If (H,�,�) is the
(linear) Lie digroup defined by (2.13), (2.14), then the induced (linear) Lie rack is (H,◦,1)

defined by (2.6). Conversely, every (linear) Lie rack is induced from a (linear) Lie digroup.

Proof (Sketch) (u,A) ◦ (v,B) = (u,A) � (v,B) � (0,A−1) = (Av,ABA−1) for all
u,v ∈ V and A,B ∈ G. �

Then we have

Theorem 2 [5] Let G be a Lie group with Lie algebra g, let V be a G-module, and let
(Q,◦,1) be the linear Lie rack defined by (2.6), where Q = V ×G. Then the tangent Leibniz
algebra of Q, T1Q, is the demisemidirect product l = V ⊕ g with bracket given by (2.5).
Conversely, let l be a split Leibniz algebra. Then there exists a linear Lie rack Q with tangent
Leibniz algebra isomorphic to l.

We will take G equal to the Poincaré Lie group P and T1G = g equal to the Poincaré Lie
algebra p. V is a P -module to be determined in the next section.

3 The Structures V = Q, O, C × Q × O, etc.

We will obtain the Poincaré Lie algebra p in terms of the Pauli spin algebra and then discuss
the various choices for V as being a p-module.

First, the Poincaré group is R4 � L, where L is the group of Lorentz transformations
and R4 has the metric diag(1,−1,−1,−1). R4 is the Minkowski space-time M4. With the
Cayley transform of R4, we identify this R4 with the set of real linear combinations of the
Pauli spin matrices by

(t, x, y, z) ∈ R4 �→ tσ0 + xσ1 + yσ2 + zσ3 (3.1)

where σ0 is the 2 × 2 identity matrix and σ1, σ2, σ3 satisfy the general Pauli conditions
σj = σj

T , σjσk = iσl , (j, k, l) a cyclic permutation of (1,2,3), and σ 2
j = σ0. Then we have

det(tσ0 + xσ1 + yσ2 + zσ3) = t2 − x2 − y2 − z2 = ‖(t, x, y, z)‖2. This may be realized with
the standard basis for the Pauli spin algebra, but we shall not need that here.

Now, we may obtain the action of the double cover of L to be SL(2,C) where, for A ∈
SL(2,C) and p = tσ0 + xσ1 + yσ2 + zσ3,

A : p �→ A · p = ApA
T
. (3.2)
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In this way, we have a semidirect product M4 � SL(2,C) which henceforth we shall call P .
But the Pauli spin matrices are a basis for the 2×2 complex matrices as well. Hence, every
element of P is in the complex span of the σj s.

Let Q be the quaternions; i.e., the set span{1, q1, q2, q3} where q2
j = −1, and qjqj+1 =

qj+2, j = 1,2,3 mod 3. The multiplication table for the qs is

1 q1 q2 q3

q1 −1 q3 −q2

q2 −q3 −1 q1

q3 q2 −q1 −1

(3.3)

Just as the reals may be embedded into the complex numbers, the complex numbers may
be embedded into the quaternions, but in a non-unique way: C ↪→ Q, x + iy �→ x1 + yqj

for any qj . In a similar fashion, we may map the Pauli spin algebra into Q by

σ0 �→ 1, iσj �→ −qj , for j = 1,2,3, (3.4)

for any given choice of the basis for the Pauli spin operators and the basis for the quaternions.
Through this map, we have an action of p and hence P on Q.

From [2], the set of octonions, O, is the span of the set {1, ej , j = 1, . . . ,7} satisfying the
multiplication table

1 e1 e2 e3 e4 e5 e6 e7

e1 −1 e6 e4 −e3 e7 −e2 −e5

e2 −e6 −1 e7 e5 −e4 e1 −e3

e3 −e4 −e7 −1 e1 e6 −e5 e2

e4 e3 −e5 −e1 −1 e2 e7 −e6

e5 −e7 e4 −e6 −e2 −1 e3 e1

e6 e2 −e1 e5 −e7 −e3 −1 e4

e7 e5 e3 −e2 e6 −e1 −e4 −1

(3.5)

i.e., eaea+1 = ea+5 = ea−2, a = 1, . . . ,7 mod 7. You may check that the octonion multiplica-
tion is not (always) associative. Check, for example, the multiplication of e1, e3 and e5.

Now

{1 �→ 1, q1 �→ ea, q2 �→ ea+1, q3 �→ ea+5} (3.6)

for any a ∈ {1, . . . ,7} mod 7 defines an inclusion Q ↪→ O. Without loss of generality, choose
a = 2. By this inclusion and (3.4), we have a natural action on the left of p and hence P on O.

For example, take −iσ1 �→ q1 �→ e2 and then we may read the action of e2 on the ej s
from the third line of (3.5). If we set W = span{1, e2, e3, e7}, then notice that e2W = W . In
general, if we take p = tσ0 + xσ1 + yσ2 + zσ3, then “−ip”W = W , and “−ip”(O\W) =
O\W . But p contains the (t, x, y, z) that have a physical interpretation.

We have, in fact, a natural action of p and P on C ⊗ Q, on C ⊗ Q ⊗ O ≡ T, on T2, etc.
Let V of the previous section equal any of these vector spaces. These are also algebras. Let
VL (VR) equal V acting on the left (right) of V . Being algebras of operation, VL (VR) are
associative. V also hosts a natural action of p and P in VL (VR).
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4 Leibniz Representations

We have a generally non-associative algebra, V , on which the Poincaré group acts. We must
make up a Leibniz algebra from the two. Now, in [7] we find the definition of a representation
of a Leibniz algebra to be

Definition 8 A representation of the Leibniz algebra l is a k-module M equipped with two
actions (left and right) of l, [−,−] : l × M → M and [−,−] : M × l → M satisfying

[m, [x, y]] = [[m,x], y] − [[m,y], x], (4.1)

[x, [m,y]] = [[x,m], y] − [[x, y],m], (4.2)

[x, [y,m]] = [[x, y],m] − [[x,m], y], (4.3)

for all x and y ∈ l and m ∈ M.

Clearly, the last two axioms are equivalent when [x, [m,y]] + [x, [y,m]] = 0. The con-
dition [x,m] = −[m,x] implies the equivalence of all three and is the condition for an
ordinary Lie algebra representation. We will keep to the common convention that we have
the right action on the internal coordinates.

In OR , define Ia+2 ≡ eRa+5,a+1,a , where eRabc(m) ≡ ((mea)eb)ec . These Ia+2 are all di-
agonal matrices with Ia+2(eb) = −eb , b = a + 2, a + 3, a + 4, a + 6 and Ia+2(eb) = +eb

otherwise. (This is addition mod 7.) For example, let us take a = 1 and compute

I3(e4) = ((e4e6)e2)e1 = (e7e2)e1 = e3e1 = −e4. (4.4)

Similarly, we define eLabc by eLabc(m) = ea(eb(ecm)) and compute eLa+5,a+1,a =
eRa+5,a+1,a ; so, everything we will say about Ia+2 ∈ OR holds equally for Ia+2 ∈ OL. In
addition, we compute that

eRa···bc···d = −eRa···cb···d for b �= c, (4.5)

and

eRab···pp···c = −eRab···c. (4.6)

From this we obtain the result (eRabc)
2 = eRabcabc = 1R for a, b, c all different. Furthermore,

1

2
(1R + eRabc) and

1

2
(1R − eRabc) (4.7)

are orthonormal idempotents for OR (which equals OL). These are all results of Dixon [2,
pp. 38–39, 43–45].

First, we will try for M just O. After a fair amount of computation we find that O = M

with [m,x] = (eR732m)x = (eL732m)x will satisfy (4.1) (with the choice for (3.6) of a = 2)
for g = su(2) or sl(2,C), the Lie algebras for Lie groups SU(2) and SL(2,C), respectively.
(We may choose any a ∈ {1, . . .} for (3.6) and the choice of Ia+2.) But this g is a Lie algebra;
so, we must have [x,m] = −[m,x] in order to have the conditions (4.1), (4.2), and (4.3)
satisfied. We remark that here we obtain again an ordinary representation on the set spanned
by 1, ea, ea+1, ea+5, and a peculiar “twist” for the rest.
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There is a second way [2, pp. 46–49] that we might obtain a Lie group when operating
on O. The set

{eLab − eLcd : eaeb = eced} (4.8)

forms a basis for the Lie algebra for the 14 dimensional exceptional Lie group G2. In fact
G2 is the automorphism group of O, acting on the left. Let us denote it by LG2. Acting on
the right we have

{eRab − eRcd : eaeb = eced}, (4.9)

since eLab − eLcd = −(eRab − eRcd) when eaeb = eced . In general, eRab − eRcd generates
actions that leave 1 and ef invariant for f �= a, b, c, d .

For example, let Q ↪→ O, q1 �→ e2, q2 �→ e3, q3 �→ e7. Then eRab − eRcd ∈ LG2 with
(a, b, c, d) equal to a permutation of (1,4,5,6) generates the following Lie algebra ele-
ments which leave 1, e2, e3, e7 invariant. There are three choices: a = 1 and b ∈ {4,5,6},
corresponding to eaeb = −e3, e7,−e2. Now, let

A = eR14 − eR65, B = −eR15 + eR46, C = eR16 − eR54. (4.10)

From (4.4) and (4.5), we obtain [A,B] = 4C, etc.; i.e., A/2, B/2, C/2, generate the
Poincaré algebra for the Poincaré group which we shall denote by p0 resp. P0. Thus we
obtain a representation of P0 on O. So we have P0 ⊂ LG2. This P0 leaves e2, e3, e7 invariant
and so will not provide e2, e3, e7 with the ps and qs coming from the Poincaré algebra as
below, but will do so for the remaining four ef s.

What is the connection between these realizations of the Poincaré group? We will take
the a = 2 representation of Q in O: q1 �→ e2, q2 �→ e3, q3 �→ e7. Let Im(p) denote the
result of this map. As we have seen, the inclusion p ↪→ OR given by x �→ eR732 Im(x)

will give the representation of p as a Lie algebra, which we will call p1. The map x �→
eR732

1
2 (1R + eR732) Im(x) = 1

2 (1R + eR732) Im(x) gives us a second representation of p as a
Lie algebra, which we denote by p2. It is the “usual” representation of p on Im(Q). The map
x �→ eR732

1
2 (1R − eR732) Im(x) = − 1

2 (1R − eR732) Im(x) gives us a third representation of p

as a Lie algebra, which we have previously denote by p0. Clearly p1 = p2 + p0.

Now there is a symmetry about the “third” axis of M4 for the Poincaré group in the
case of massive, spinning particles at the origin of phase space. Specifically, one has
the following: Representations (resp. phase space representations) of the massive spin-
ning case of P = R4 � L = R4 � SL(2,C) are formed [16] by taking the subgroup
H = Lp∗,s∗ = [SL(2,C)]p∗,s∗ (resp. H ′ = Rp∗ � Lp∗,s∗ = Rp∗ � [SL(2,C)]p∗,s∗ ) where
p∗ = m(1,0,0,0) ∈ R4 is the momentum at rest, s∗ = S(0,0,0,1) is the spin at rest, m is
the mass, S is the spin, and where Lp∗,s∗ is the part of L that fixes p∗ and s∗. We note that
p

μ∗ (s∗)μ = 0, a reflection of the property that the magnetic moment is orthogonal to the mo-
mentum. The representation spaces are then P/H (resp. P/H ′). We remark that we have
P -invariance of these spaces and that L/Lp,s = SU(2). We also have, for A ∈ SU(2), that
(1) A · p∗ = Ap∗A† = p for some p ∈ M4 and (2) A · s∗ = As∗A† = s for some s ∈ M4.
Then we have pμpμ = m2, sμsμ = −S2, and pμsμ = 0; i.e. we have the spin and mo-
mentum coordinates. There is in fact one element A that satisfies (1) and (2). We will call
that element Ap,s . In this fashion, SL(2,C)/[SL(2,C)]p∗,s∗ ≈ R3

momentum � S2 where the
spin space is S2(p) = {s ∈ M4 : p · s = 0, s · s = −S2}. Then (q,A) = (q ′,A′)(λp∗,B) for
(λp∗,B) ∈ H ′ iff q = q ′ +λp′ = q ′ +λAps ·p∗. We make the choice λ = −m−2(q ·p). Sum-
marizing, we have π : P → P/H ′, π : (q,A) �→ (q + Rp,Ap,sSL(2,C)p∗s∗) ≡ [(q,p, s)].
So, the Poincaré group has the coordinates (q,p, s) built into it in the representation for
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m �= 0 and S �= 0. Note that you have the spin in the 3-direction of M4 only if Aps leaves
the 3-axis invariant (so s = s∗). H is the space of complex-valued functions that are square
integrable over P/H ′ with respect to the invariant measure, or one of the irreducible spaces
that you get from this H.

In view of Theorem 2, H × P is a linear Lie rack with Leibniz algebra H ⊕ p. We
may generalize this to l = (H × V ) ⊕ p with V as in the last paragraph of the last section.
Alternatively, we may take M = O, or for that matter M = V , and l = H ⊕ p. In the latter
case, [m,x] is the appropriate tensor product operator of (mIa+2)x whenever O is present
and mx otherwise. Then, the action of su(2) or sl(2,C) (i.e., of Q) on V decomposes into
two parts: the part containing only (the injection of) Q, and the part containing “V \Q”.

Dixon [2] made the discovery that we may write the isospin, the hypercharges, and
the charge operators in terms of the LG2-group actions on V = T2. Dixon shows that
the operators (in the theory of quarks) are the third component of the isospin ̂I , I3, in
the C × Q part of T; the hypercharges Y2 = −e7/2 ∈ T2

R and Y3 a linear combination of
−ie7/6 ∈ T2

L and ie7/6 ∈ T2
R . So, we look for Poincaré transformations which leave q3 and

e7 invariant. Now we may form the stability subgroup of LG2 stabilizing 1 and e7 with basis
{eRab − eRcd : eaeb = eced , a, b, c, d �= 7}. Then we obtain an SU(3) subgroup of LG2. This
SU(3) equals the color group for quarks! Clearly P0 ⊂ SU(3) for the P0 just constructed.
When working on T2, we also have the orthogonal group in one variable, O(1); so, we may
talk about the O(1), P0, and SU(3) representations there. Other groups are generated in a
similar fashion, and play a role in “weak mixing”, gauge fields, etc. We will not derive them
here, but they are derived in a similar fashion as those of O(1), SU(2), SU(3).

Next, we will work with the Leibniz algebra {(t, g); t ∈ H × T2, g ∈ p} as obtained on
V = H × T2 instead of on T2. What remains to be checked is that the various operators
that Dixon and his forerunners have used are Poincaré invariants for one of the pi . Then,
since p̂μp̂μ = m2 and (the isospin) ̂Iμ

̂Iμ = I (I + 1) are Poincaré invariants, we may obtain
the Okubo mass formula [6, 9, 10] in any representation of P . In the representation P1, the
operators that Nixon and his forerunners have used in classifying the particles and quarks
are just at s∗ only, which singles out the “3-axis” (q3 and e7)! The Poincaré transformations
on P/H ′ then may be used to express these operators at general (q,p, s). In the representa-
tion, P0, we may use the Hilbert space for any mass/spin as only the fact that e7 is invariant is
used. Thus, working in the demisemidirect product of V with P , then, you have in addition
the “position” and “momentum”, suitably generalized, for any of these objects. It remains
to be seen which of these representations fits the physics further. But we are not finished
with quark theory yet; we have to have the property that certain triplets of quarks give rise
to the particles. A particle is also something in (H × T2) ⊕ p that has none of the general
properties of T2 that deal with the quarks proper. In particular, we must assign the quarks
the labels of e1, e4, e5, e6 so that the sum of the corresponding three of the coefficients of ej ,
j ∈ {1,4, ,5,6} vanish when added, as that is what a particle would have. Nixon’s results
have precisely that, although it is obscure in his notation. Also, they would have to have
the H part of the “wave function” all the same so that when you added, you would get just
addition in the T2 part. This leaves the span of ej , j ∈ {2,3,7}, which form a representa-
tion of su(2), the spin, and so is allowed for a particle. This is a duplication, as the spin is
also represented in H. (But, maybe the representation here is not the spin but an internal
coordinate.???) The only other route to particles is to have all coefficients of the ej add to
zero which puts constraints on the coefficients. Then T2 would reduce to C, and you would
obtain the particles as just being in H, as they should, but then the coefficient of e7 = 0.

If we obtained the “other groups” in this way, then we would have the symmetry with
which we would derive the mass formulas and the mass/spin formulas for the particles. We
shall not do that here.
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We have achieved models in which we may attribute momentum, position, and spin to
the quarks, as well as the particles, and in which we may discuss the P -invariance of the
operators which are inputs for the mass formulas and the mass/spin relations.

5 (Co)homology

We are left with the question “How does the phase space P/H ′ arise, and does that derivation
have an equivalent in the Leibniz algebra set up?” Guillemin and Sternberg [3] have shown
that for any Lie algebra/Lie group, the phase spaces (symplectic spaces) on which the group
may act are all found in a certain set determined by the coboundry operator. The coboundary
operator is something entering into Lie (co)homology. P/H ′ is just one example of one such
phase space [16]. Now

d(g1 ⊗· · ·⊗gn) =
∑

1≤i<j≤n

(−1)jg1 ⊗· · ·⊗gi−1 ⊗[gi, gj ]⊗gi+1 ⊗· · ·⊗ ĝj ⊗· · ·⊗gn, (5.1)

where the gi ∈ Lie algebra g, defines the (Lie) boundary map. One may use the analog
in the Leibniz algebra setting [7]! If all the (co)homology theory and the identification of
the symplectic spaces remains the same in analog, then the picture for the demisemidirect
product of V with p would be complete. Although specific examples have been worked out,
there is as yet no general theory that will do the trick although there has been some progress
[7, 8]. This is a point at which we will just say that it is under consideration.
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